

X SERIES MULTIFUNCTION TUBE

FIBER LASER CUTTING MACHINE

Tube Laser Cutting Machine--X Series

The equipment meets the parts processing requirements of most industries, working accuracy is stable. Selecting the optimal force and supporting structure, the overall mechanical property of equipment is perfect. Adopting cutting-edge optical concept to improve cutting performance. High speed cutting, auxiliary loading and unloading and efficient production reduce labor costs. At present, laser cutting machines have been widely used in electronics, electrical, mechanical hardware, new energy lithium, packaging, solar, LED, automotive and other industries.

Product parameters

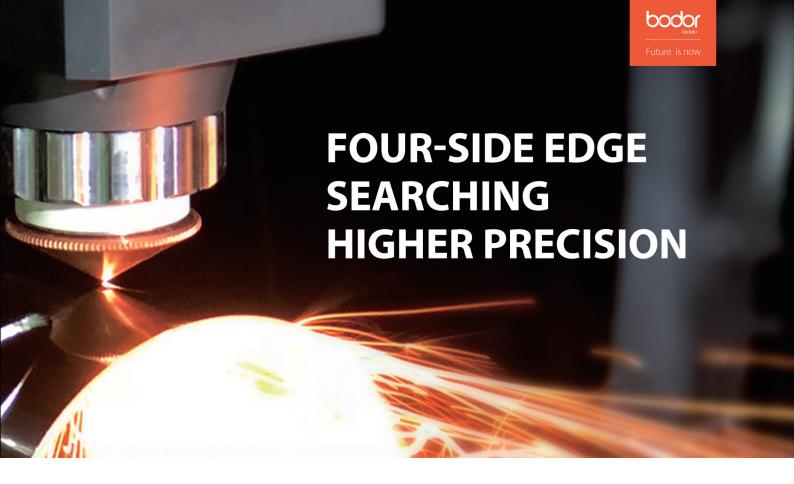
Model X160 X260

Maximum machinable tube length 6500mm

Laser power 6000W/4000W/3000W/2000W/1500W/1000W

X/Y-axis positioning accuracy 0.05mm
X/Y-axis repositioning accuracy 0.03mm

X axis maximum speed 140m/min 120m/min


Y axis maximum speed 90m/min

Round tube Φ10-Φ160mm Φ20-Φ260mm

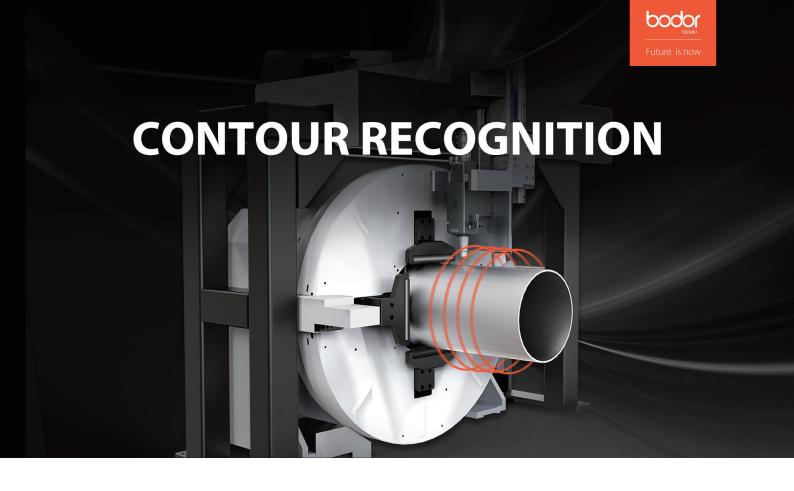
Square tube = 10×10 - 140×140mm = 20×20 - 180×180mm

160mm≥Rectangular tube Side length≥10mm 200mm≥Rectangular tube Side length≥20mm

Circumscribed circle diameter≤160mm Circumscribed circle diameter≤260mm

Four-side Edge Searching, Higher Precision

Brand new four-side edge searching Optimized method and algorithm Higher cutting precision and stability



Self-centering Chuck

DC motor driven jaws, fast automatic centering and clamping pipe, stable performance, wide clamping range, strong clamping force.

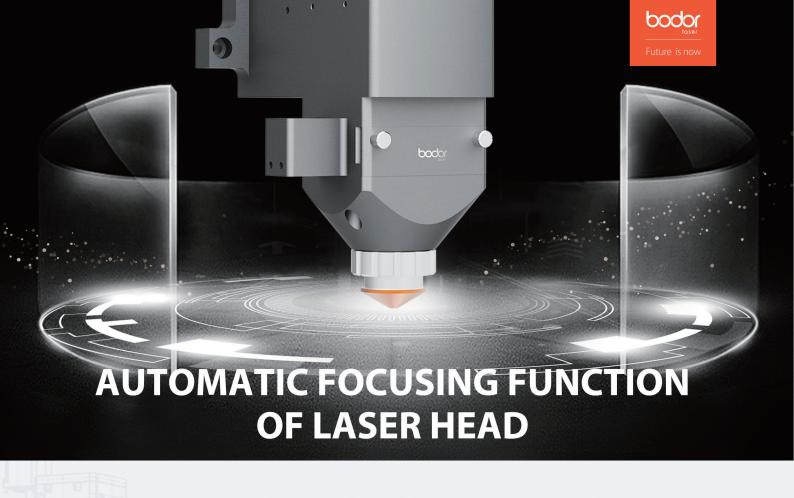
Smaller chuck size, lower rotating inertia, stronger dynamic performance.

Gear transmission mode, higher transmission efficiency, long working life span and high reliability.

Stable and High Precision

Use innovative photoelectric positioning replace the unstable capacitance positioning greatly improves recognition precision and stability

Flash Recognition


It takes only 0.8s to finish the recognition, and the processing can be started immediately

Low Deviation for All Suitable Lengths

The cutting spot deviation is within 0.15mm for tubes of all suitable lengths

High Applicablity

Automatic compensation for different tubes to achieve high-precision recognition for square tube, round tube, oval tube and waist tube.

Auto focus

Applicable to multiple focal lengths, automatically adjusts focal position in cutting process by different sheet thickness.

Free your hands

Focal length is controlled by operating system, which effectively avoids errors or faults caused by manual operation.

Simple and fast

Applying Bodor lightning perforation technology reduce almost 90% work time. When technicist changes different metal sheet, Auto focus laser head can automatically read system storage parameters, which make the cutting process less gas, less electricity, lower cost, high efficiency.

Accurate

By setting perforation focal length and cutting focal length respectively, the cutting is more accurate.

Durable

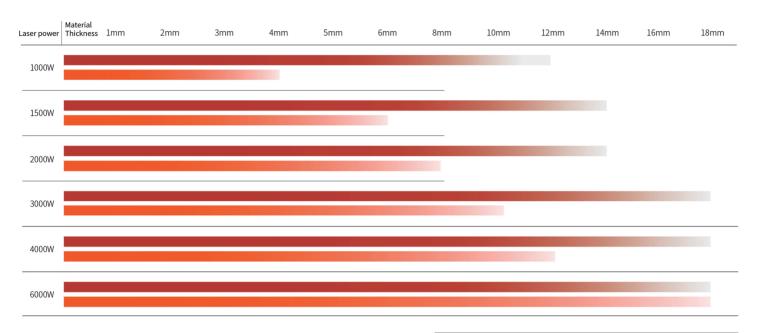
By increasing collimation & focus protective lens, the key components can be protected.

Built-in double water-cooling structure ensures constant temperature of collimating and focusing components, prevents lenses from overheating and prolongs service life of lenses.

Bodor Thinker 3.0

Bodor Thinker 3.0

Smart control system supports NC code. No need for nesting software, direct support for cutting angle steel and channel steel. 2D and 3D display makes it intuitive and operable. Press one button to find the edges and align laser head. Process library makes it easy to operate.



Appearance design

Aesthetics was introduced to industrial ID, perfect combination of technology and aesthetics.

Cutting Capacity

Carbon steel
Stainless steel
Max cutting thickness
(long-term using isn't recommended)

Above data is only for reference


Fiber Laser Cutting Process Parameters

		1000W	MAX- 1000W(25um)	1500W	2000W	MAX- 2000W(50)	YLR- 2000W	3000W	MAX- 3000W(50)	4000W	MAX- 4000W(50)	IPG 6000W	MAX 6000W	8000W
Material	Thickness	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min
	1	8.010	8.010	8.010	8.010	8.010	8.010	8.010	8.010	810	810	810	810	
	2	4.06.5	4.57.0	4.56.5	4.76.5	4.76.5	4.76.5	4.87.5	4.87.5	57.5	57.5	57.5	57.5	
	3	2.43.0	2.43.0	2.64.0	3.04.8	3.04.8	3.04.8	3.35.0	3.35.0	3.55.0	3.55.0	3.55	3.55	
	4	2.02.4	2.02.4	2.53.0	2.83.5	2.83.5	2.83.5	3.04.2	3.04.2	3.04.0	3.04.0	3.04.5	3.04.5	
	5	1.52.0	1.52.0	2.02.5	2.23.0	2.23.0	2.23.0	2.63.5	2.63.5	2.73.6	2.73.6	3.04.2	3.04.2	
	6	1.41.6	1.41.6	1.62.2	1.82.6	1.82.6	1.82.6	2.33.2	2.33.2	2.53.4	2.53.4	2.53.5	2.53.5	
Carbon steel (Q235A)	8	0.81.2	0.81.2	1.01.4	1.21.8	1.21.8	1.21.8	1.82.6	1.82.6	2.03.0	2.03.0	2.23.2	2.23.2	
02	10	0.61.0	0.61.0	0.81.1	1.11.3	1.11.3	1.11.3	1.22.0	1.22.0	1.52.4	1.52.4	1.82.5	1.52.2	No support
	12	0.50.8	0.50.8	0.71.0	0.91.2	0.91.2	0.91.2	1.01.6	1.01.6	1.21.8	1.21.8	1.22.0	1.22.0	
	14			0.50.7	0.70.8	0.70.9	0.81.0	0.91.2	0.91.2	0.91.2	0.91.2	1.21.8	1.01.5	
	16				0.6-0.7	0.60.8	0.6-0.8	0.71.0	0.71.0	0.81.0	0.81.0	0.81.3	0.71.2	
	18				0.40.6	0.50.7	0.50.7	0.60.8	0.60.8	0.60.9	0.60.9	0.60.9	0.60.9	
	20							0.50.8	0.50.7	0.50.8	0.50.8	0.50.8	0.50.8	
	22							0.30.7	0.30.7	0.40.8	0.40.8	0.40.8	0.40.6	
	25											0.30.55	0.20.5	
	1	1825	2436	2027	2430	2450	2450	3035	3058	3245	4072	4252	4252	
	2	57.5	610	8.012	9.012	9.014	9.015	1321	1339	1628	2445	2033	2033	
	3	1.82.5	2.23.5	3.05.0	4.06.5	4.07.0	4.87.5	6.010	614	7.015	7.018	1522	1522	
	4	1.21.3	1.21.6	1.52.4	3.04.2	3.24.5	3.24.5	4.06.0	4.07.0	5.08.0	6.010.0	1015	1015	
	5	0.60.7	0.60.75	0.71.3	1.8-2.5	2.0-2.8	2.0-2.8	3.05.0	3.05.0	3.55.0	4.05.0	8.012	6.58.0	
	6			0.71.0	1.2-1.8	1.2-2.0	1.2-2.0	2.04.0	2.04.0	2.54.5	3.04.5	4.88.0	4.26.0	
Stainless	8				0.7-1.0	0.7-1.0	0.7-1.0	1.52.0	1.52.0	1.62.0	1.62.0	3.04.0	2.53.5	
stainless steel (201) N2	10							0.60.8	0.60.8	0.81.2	0.81.2	1.62.5	1.22.0	
	12							0.40.6	0.40.6	0.50.8	0.50.8	0.81.5	0.81.5	
	14									0.40.6	0.40.6	0.60.8	0.50.8	
	16											0.50.8	0.40.7	
	18											0.40.6	0.30.6	
	20											0.30.5	0.20.5	
	25											0.20.4	0.20.4	
	1	6.010	6.010	1020	1525	1525	2030	2538	2540	3545	3545	4255	4255	
	2	2.83.6	2.83.6	5.07.0	710	710	1015	1018	1320	1324	1324	2040	2040	
	3	0.71.5	0.71.5	2.04.0	4.06.0	4.06.0	5.07.0	6.58.0	6.58.0	7.013	7.013	1525	1525	
	4			1.01.5	2.03.0	3.54.0	3.55.0	3.55.0	3.55.0	4.05.5	4.05.5	9.512	9.512	
Aluminum	5			0.71.0	1.21.8	1.21.8	1.82.5	2.53.5	2.53.5	3.04.5	3.04.5	5.08.0	5.08.0	
N2	6				0.71.0	1.01.5	1.01.5	1.52.5	1.52.5	2.03.5	2.03.5	3.85.0	3.85.0	
	8				0.60.8		0.60.8	0.71.0	0.71.0	0.91.6	0.91.6	2.02.5	2.02.5	
	10							0.40.7		0.61.2	0.61.2	1.01.5	1.01.5	
	12							0.3-0.45		0.40.6		0.81.0	0.81.0	
	16									0.30.4		0.50.8	0.50.8	
	20											0.50.7		
	25											0.30.5		
	1	6.010	6.010	8.013	1016	1016	1218	2035	2035	2535	2535	3545	3545	
	2	2.83.6	2.83.6	3.04.5	4.57.5	5.06.0	6.08.5	6.010	6.010	8.012	8.012	2030	2030	
	3	0.51.0	0.51.0	1.52.5	2.54.0	2.54.0	2.54.0	4.06.0	4.06.0	5.08.0	5.08.0	1218	1218	
	4			1.01.6	1.52.0	2.03.0	2.03.0	3.0-5.0	3.0-5.0	3.25.5	3.25.5	5.08.0	5.08.0	
	5			0.50.7	0.91.2		0.91.2	1.52.0	1.52.0	2.03.0	2.03.0	4.56.0	4.56.0	
	6				0.40.7		0.40.9	1.01.8	1.01.8	1.42.0	1.42.0	3.04.5	3.04.5	
	8							0.50.7		0.71.2		1.62.2	1.62.2	
Brass	10									0.20.5		0.81.2	0.81.2	
N2	12											0.30.5	0.30.5	
	14											0.30.4	0.30.4	
	16													
	18													
	20													
	25													
	30													
	35													

For more information, please go to the website: www.bodor.com

Metal Samples

OFFICE

WORKSHOP