


GEAR DRIVE, 10S EXCHANGE, NO.1 IN THE INDUSTRY

Exchange Platform Laser Cutting Machine E-Series

The equipment meets the parts processing requirements of most industries, working accuracy is stable. Selecting the optimal force and supporting structure, the overall mechanical property of equipment is perfect. Adopting cutting-edge optical concept to improve cutting performance. High speed cutting, auxiliary loading and unloading and efficient production reduce labor costs. At present, laser cutting machines have been widely used in electronics, electrical, mechanical hardware, new energy lithium, packaging, solar, LED, automotive and other industries.

Product parameters

Model E3015 E4020 E6020 E6025 E8025

Working Area 3000*1500mm 4000*2000mm 6100*2000mm 6100*2500mm 8100*2500mm

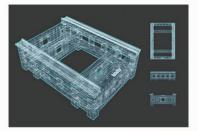
Laser Power 6000w/4000w/3000w/2000w/1500w/1000w

X/Y-axis Positioning Accuracy 0.03mm
X/Y-axis Repositioning Accuracy 0.02mm
Max. linkage speed 140m/min

DUAL-PLATFORM AUTOMATIC EXCHANGE SYSTEM

Exchange Platform Laser Cutting Machine E Series

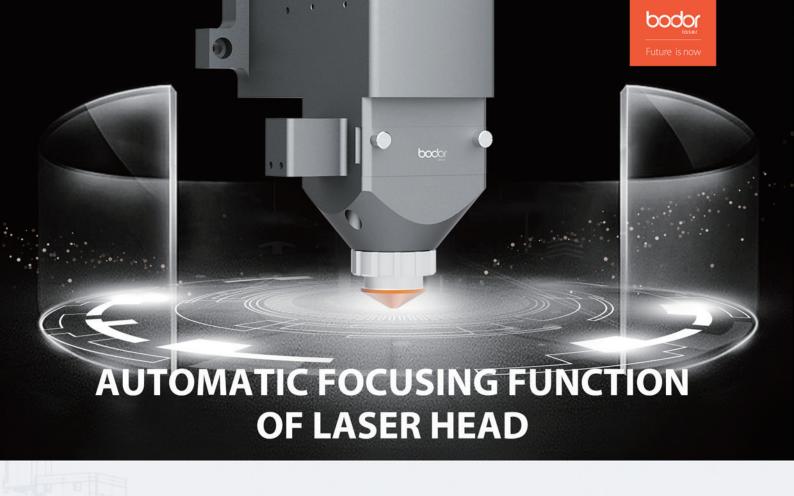
Gear drive reduces loading time, exchange in 10 seconds. Rapid exchange between two platforms greatly improves work efficiency.



Material is more suitable

Technique is more suitable

Structure is more reasonable


Clone production

Pouring Mold, clone production; integrally formed, reject splicing

Durable

The usage of flake graphite with the lowest tensile strength of 200MPa gives the whole equipment strong shock absorption, wear resistance, high hardness, high carbon content, high compressive strength.

Low notch sensitivity and thermal sensitivity of cast iron bed reduces the loss of equipment in using, keeps the precision of cutting unchanged permanently and no deformation in its life cycle.

Auto focus

Applicable to multiple focal lengths, automatically adjusts focal position in cutting process by different sheet thickness.

Free your hands

Focal length is controlled by operating system, which effectively avoids errors or faults caused by manual operation.

Simple and fast

Applying Bodor lightning perforation technology reduce almost 90% work time. When technicist changes different metal sheet, Auto focus laser head can automatically read system storage parameters, which make the cutting process less gas, less electricity, lower cost, high efficiency.

Accurate

By setting perforation focal length and cutting focal length respectively, the cutting is more accurate.

Durable

By increasing collimation & focus protective lens, the key components can be protected. Built-in double water-cooling structure ensures constant temperature of collimating and focusing components, prevents lenses from overheating and prolongs service life of lenses.

Automatic Replacement

Automatic Calibration

Automatic Nozzle Changer, Let Machine Know More About You

Adopting abundant and accurate control system can realize automatic replacement of nozzles according to different materials and thicknesses, saving manual replacement time and improving processing efficiency, smart and convenient; Newest automatic calibration and cleaning functions can achieve fully automatic laser head calibration and nozzle cleaning, reducing the repetitive manual work; High-precision drive system provides a reliable replacement precision and stability to ensure that every replacement can be perfectly safe. Fully enclosed protection of the whole part improves the safety of parts and personal.

Intelligent anti-collision

360° radar system can detect any obstacles in advance, and Z axis high-speed motion will be activated to immediately avoid obstacles, avoiding collisions.

Higher Efficiency, Lower Cost

This function Lowers the damage rate of laser head, and accordingly reduces maintenance cost, prolonging service life of the machine. Avoid production halt caused by collisions, ensuring continuous production.

MANGO

Mango wireless remote control handle

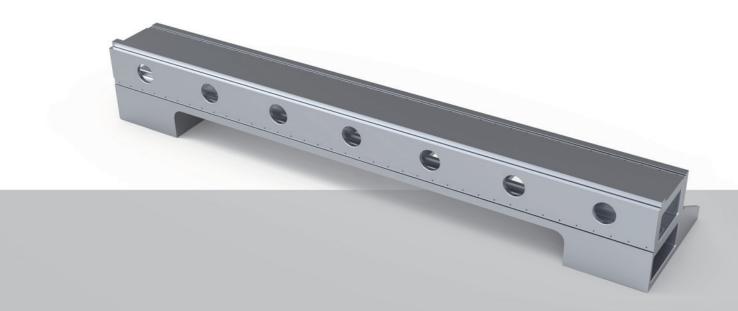
Mango wireless remote control handle

Mango shape, elegant curve, use with one hand, magnetic attraction design.

TOUCH CONTROL

Elegant appearance curve

The new 21.5 inch touch display with larger area and more convenient operation. 10 touch points ensures more operation accuracy.



Intelligent WIFI Remote Assistance

Global real-time feedback provides fault analysis and troubleshooting in time.

CAST ALUMINUM CROSSBEAM

Cast aluminum crossbeam

Integral Pressure Casting by Steel Mold Makes It Light, Flexible and Efficient

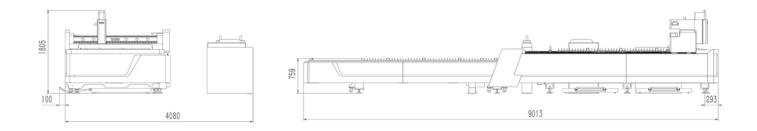

Solution treatment and fine finishing give the crossbeam desirable integrity, rigidity, surface quality as well as toughness and ductility. The light weight and strong rigidity of aluminum alloy are suitable for high speed movement during processing, and the high flexibility is beneficial to high-speed cutting of various graphics if the cutting accuracy is ensured. Light crossbeam offers high operation speed, improving efficiency and ensuring quality.

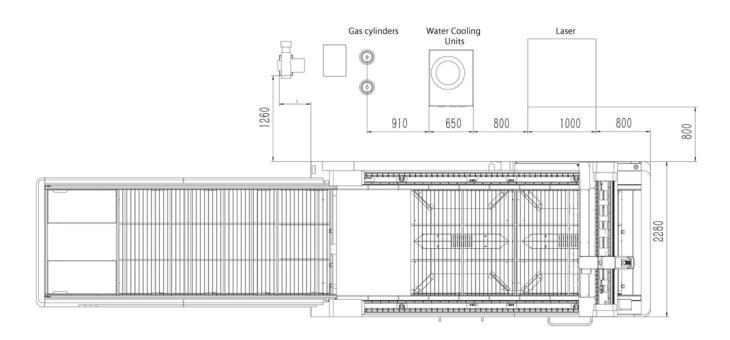
Bodor Pro 2.0

Independent R&D operating system offers simple interface and operation method, supports input of multiple types of graphics, automatically optimizes cutting orders, intelligently searches edges, and has automatic positioning function.

Auxiliary Gas Low Pressure Alarm Function

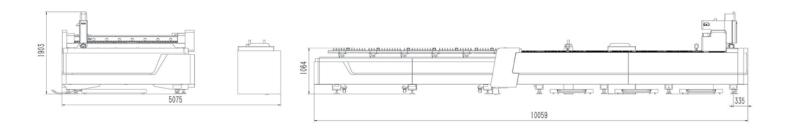
Providing real-time pressure detection and reporting abnormal information ensure cutting effect , precision and timely replace gas

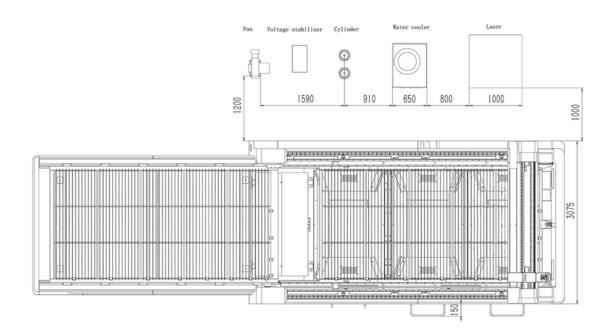

Appearance design


Aesthetics was introduced to industrial ID, perfect combination of technology and aesthetics

The new injection molding and anti-flaming Z-axis cover is 1/10 of weight of the original and satisfys the maximum acceleration while making it simpler. High-pressure cast aluminum cantilever supports for a stronger, long-lasting shape. The flowing ice blue light gives processing feedback directly. Brand new injection curved hocky-shaped decoration is a perfect combination between PMMA and metal plate. The whole product is more coordinated into a perfect artwork.

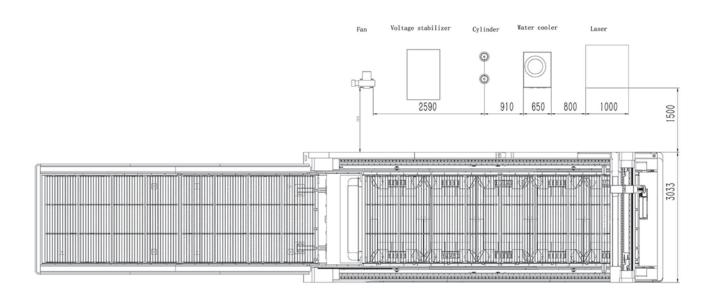
E3015 • FLOOR PLAN




PLACING REQUIREMENT

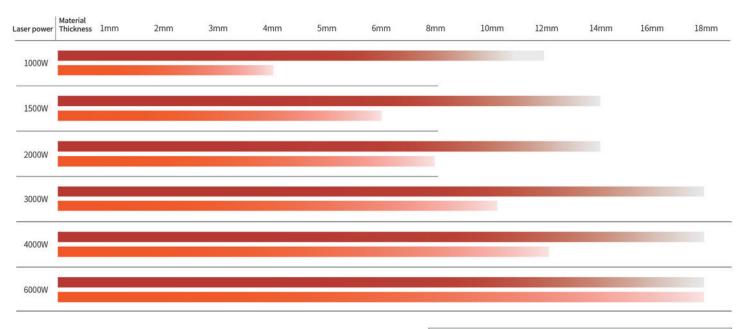
- 1. The whole machine should keep away from obstacles at least 1m.
- 2. The whole machine should be far away from the hypocenter.
- 3. The planeness of placing field should be less than 5 mm.
- 4. Voltage fluctuation of the whole machine should be kept in ± 5%.

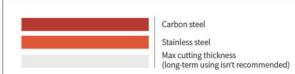
E4020 • FLOOR PLAN


PLACING REQUIREMENT

- 1. The whole machine should keep away from obstacles at least 1m.
- 2. The whole machine should be far away from the hypocenter.
- 3. The planeness of placing field should be less than 5 mm.
- 4. Voltage fluctuation of the whole machine should be kept in ± 5%.

E6020 • FLOOR PLAN

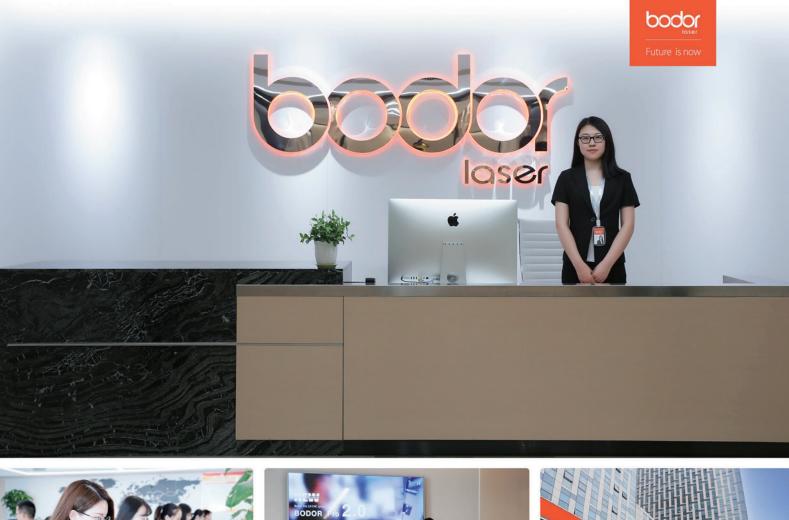



PLACING REQUIREMENT

- 1. The whole machine should keep away from obstacles at least 1m.
- 2. The whole machine should be far away from the hypocenter.
- 3. The planeness of placing field should be less than 5 mm.
- 4. Voltage fluctuation of the whole machine should be kept in ± 5%.

Cutting Capacity


Above data is only for reference


Fiber Laser Cutting Process Parameters

		1000W	MAX- 1000W(25um)	1500W	2000W	MAX- 2000W(50)	YLR- 2000W	3000W	MAX- 3000W(50)	4000W	MAX- 4000W(50)	IPG 6000W	MAX 6000W	8000W
Material	Thickness	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min
	1	8.010	8.010	8.010	8.010	8.010	8.010	8.010	8.010	810	810	810	810	
	2	4.06.5	4.57.0	4.56.5	4.76.5	4.76.5	4.76.5	4.87.5	4.87.5	57.5	57.5	57.5	57.5	
	3	2.43.0	2.43.0	2.64.0	3.04.8	3.04.8	3.04.8	3.35.0	3.35.0	3.55.0	3.55.0	3.55	3.55	
	4	2.02.4	2.02.4	2.53.0	2.83.5	2.83.5	2.83.5	3.04.2	3.04.2	3.04.0	3.04.0	3.04.5	3.04.5	
	5	1.52.0	1.52.0	2.02.5	2.23.0	2.23.0	2.23.0	2.63.5	2.63.5	2.73.6	2.73.6	3.04.2	3.04.2	
	6	1.41.6	1.41.6	1.62.2	1.82.6	1.82.6	1.82.6	2.33.2	2.33.2	2.53.4	2.53.4	2.53.5	2.53.5	
arbon steel (Q235A)	8	0.81.2	0.81.2	1.01.4	1.21.8	1.21.8	1.21.8	1.82.6	1.82.6	2.03.0	2.03.0	2.23.2	2.23.2	
02	10	0.61.0	0.61.0	0.81.1	1.11.3	1.11.3	1.11.3	1.22.0	1.22.0	1.52.4	1.52.4	1.82.5	1.52.2	
	12	0.50.8	0.50.8	0.71.0	0.91.2	0.91.2	0.91.2	1.01.6	1.01.6	1.21.8	1.21.8	1.22.0	1.22.0	
	14			0.50.7	0.70.8	0.70.9	0.81.0	0.91.2	0.91.2	0.91.2	0.91.2	1.21.8	1.01.5	
	16				0.6-0.7	0.60.8	0.6-0.8	0.71.0	0.71.0	0.81.0	0.81.0	0.81.3	0.71.2	
	18				0.40.6	0.50.7	0.50.7	0.60.8	0.60.8	0.60.9	0.60.9	0.60.9	0.60.9	
	20							0.50.8	0.50.7	0.50.8	0.50.8	0.50.8	0.50.8	
	22							0.30.7	0.30.7	0.40.8	0.40.8	0.40.8	0.40.6	
	25											0.30.55	0.20.5	
Stainless steel (201) N2	1	1825	2436	2027	2430	2450	2450	3035	3058	3245	4072	4252	4252	
	2	57.5	610	8.012	9.012	9.014	9.015	1321	1339	1628	2445	2033	2033	
	3	1.82.5	2.23.5	3.05.0	4.06.5	4.07.0	4.87.5	6.010	614	7.015	7.018	1522	1522	
	4	1.21.3	1.21.6	1.52.4	3.04.2	3.24.5	3.24.5	4.06.0	4.07.0	5.08.0	6.010.0	1015	1015	
	5	0.60.7	0.60.75	0.71.3	1.8-2.5	2.0-2.8	2.0-2.8	3.05.0	3.05.0	3.55.0	4.05.0	8.012	6.58.0	
	6			0.71.0	1.2-1.8	1.2-2.0	1.2-2.0	2.04.0	2.04.0	2.54.5	3.04.5	4.88.0	4.26.0	
	8				0.7-1.0	0.7-1.0	0.7-1.0	1.52.0	1.52.0	1.62.0	1.62.0	3.04.0	2.53.5	
	10							0.60.8	0.60.8	0.81.2	0.81.2	1.62.5	1.22.0	
	12							0.40.6	0.40.6	0.50.8	0.50.8	0.81.5	0.81.5	No support
	14									0.40.6	0.40.6	0.60.8	0.50.8	
	16											0.50.8	0.40.7	
	18											0.40.6	0.30.6	
	20											0.30.5	0.20.5	
	25											0.20.4	0.20.4	
Aluminum N2	1	6.010	6.010	1020	1525	1525	2030	2538	2540	3545	3545	4255	4255	
	2	2.83.6	2.83.6	5.07.0	710	710	1015	1018	1320	1324	1324	2040	2040	
	3	0.71.5	0.71.5	2.04.0	4.06.0	4.06.0	5.07.0	6.58.0	6.58.0	7.013	7.013	1525	1525	
	4			1.01.5	2.03.0	3.54.0	3.55.0	3.55.0	3.55.0	4.05.5	4.05.5	9.512	9.512	
	5			0.71.0	1.21.8	1.21.8	1.82.5	2.53.5	2.53.5	3.04.5	3.04.5	5.08.0	5.08.0	
	6				0.71.0	1.01.5	1.01.5	1.52.5	1.52.5	2.03.5	2.03.5	3.85.0	3.85.0	
	8				0.60.8		0.60.8	0.71.0	0.71.0	0.91.6	0.91.6	2.02.5	2.02.5	
	10							0.40.7		0.61.2	0.61.2	1.01.5	1.01.5	
	12							0.3-0.45		0.40.6		0.81.0	0.81.0	
	16									0.30.4		0.50.8	0.50.8	
	20											0.50.7		
	25											0.30.5		
		6.010	6.010	8.013	1016	1016	12 10	2035	20. 25	26.26	2535		3545	
Brass N2	1						1218		2035	2535		3545		
	2	2.83.6	2.83.6	3.04.5	4.57.5	5.06.0	6.08.5	6.010	6.010	8.012	8.012	2030	2030	
	3	0.51.0	0.51.0	1.52.5	2.54.0	2.54.0	2.54.0	4.06.0	4.06.0	5.08.0	5.08.0	1218	1218	
	4			1.01.6	1.52.0	2.03.0	2.03.0	3.0-5.0	3.0-5.0	3.25.5	3.25.5	5.08.0	5.08.0	
	5			0.50.7	0.91.2		0.91.2	1.52.0	1.52.0	2.03.0	2.03.0	4.56.0	4.56.0	
	6				0.40.7		0.40.9	1.01.8	1.01.8	1.42.0	1.42.0	3.04.5	3.04.5	
	8							0.50.7		0.71.2		1.62.2	1.62.2	
	10									0.20.5		0.81.2	0.81.2	
	12											0.30.5	0.30.5	
	14											0.30.4	0.30.4	
	16													
	18													
	20													
	25													
	30													
	35													

For more information, please go to the website: www.bodor.com

Metal Samples

OFFICE

WORKSHOP